Multivariate Analysis Techniques

Prof G Soral Head

Deptt of Accountancy and Statistics M L Sukhadia University UDAIPUR (Raj)

FACTOR ANALYSIS

 Determines latent relationships among variables

 Helps in reducing number of variables and data overload

Technique

- •Based on interdependence or correlation between variables
- Leads to identification of weighted linear combination of variables viz.
 Factors.

Main Steps

- 1. Data Base:
- observed values of certain variables (k) in respect of certain objects (n)

- 2. Standardized Score:
- To find scale free and comparable data

3. Correlation Matrix

	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆
V ₁	1.00	0.55	0.43	0.32	0.28	0.36
V ₂		1.00	0.50	0.25	0.31	0.32
V ₃			1.00	0.39	0.25	0.33
V_4				1.00	0.43	0.49
V_5					1.00	0.44
V ₆						1.00

4. Determination of Factors:

Centroid Method or Principal Components Method

5. Results:

		COMMONALIT IES		
	F ₁	F ₂	F ₃	IES
V1	0.86	0.12	0.04	0.76
V2	0.84	0.18	0.10	0.75
V ₃	0.68	0.24	0.15	0.54
V4	0.10	0.92	0.05	0.86
V5	0.06	0.94	0.08	0.89
V ₆	0.12	0.14	0.89	0.83
Eigen Values:	1.94	1.85	0.84	4.63
Proportion of Total Variance	0.32	0.31	0.14	0.77
Proportion of Common Variance	0.42	0.40	0.18	1.00 (100%)

II CLUSTER ANALYSIS

Generally used for market segmentation, analysis of consumer behaviour etc.

Technique:

Based on identifying interdependence

- A group of items with high internal homogeneity and high external heterogeneity, called "clusters" are identified
- * Typically, applied to data with interval scales

Main Steps:

1. Data required:

Responses on various attributes of number of respondents

2. Measurement of similarity:

Euclidean Distance Function

Mahalanobis Distance Function

3. Cluster Identification

III CONJOINT ANALYSIS

<u>Utility:</u>

- Determining relative value of different attributes of an item
- Identification of the most desirable combination of attributes of a product or service

Technique:

Based on interdependence

Applies to categorical data only

Main steps:

- 1.Identification of attributes
- 2. Developing alternative sets
- 3.Getting respondents` preferences
- 4.Determination of "Utility":

Means value to the respondent

IV DISCRIMINANT ANALYSIS

<u>Utility:</u>

 Classification of individuals or observations into two or more mutually exclusive groups

Technique:

- Dependence relationship
- Dependent variable: Non-metric or categorical Independent variable: Metric or continuous
- Discriminant function: A linear combination of variables

Main Steps:

- 1. Identification of a priori groupings
- 2. Identification of variables
- 3. Application of factor analysis
- 4. Developing ratio/ variable profiles
- 5. Developing discriminant function

Which has the greatest variance between groups in relation to the variance within groups. Thus, maximizes Fisher`s F ratio

6. Calculation of cut-off point Mean discriminant score of two groups/2

Shrivastava-Yadav Model

For prediction of sickness

- •Sample of 78 companies (39 each from
- sick and non-sick categories)
- •36 financial ratios
- •Factor analysis based identification of 10 factors
- •5 picked up (with 5, 3, 5, 1, and 1 ratios respectively in each)
- 99 ratio profiles identified and discriminant analysis carried out for them
- •7 best listed down (based on error one yr. prior to sickness)

- 17 new combinations were then tried (now for six-yrs. period before sickness)
- finally:

Y = 19.8927 V9 +0.0047 V25 + 0.7141 V31 + 0.4860 V35

where

- V9 = EBIT / Total tangible assets
- V25 = Current Assets/ C. Liab.
- V31 = Net Sales / TTA
- V35 = Defensive assets / Total Op. Exp.

Predictive accuracy of this model:

Yr prior to sickness	1	2	3	4	5	6
Predictive accuracy (%)	95	87	86	82	79	78

THANK YOU

drgsoral@gmail.com